Arbuscular mycorrhiza, carbon content and soil aggregation in Sonoran Desert plants


Desert trees and shrubs play a relevant role in stabilizing the deserts ecosystems, and mycorrhizal association is very important for its adaptation and survival in arid and semi-arid areas. The influence of mycorrhizic fungi on the formation of water stable aggregates through glomalin and on soil carbon content has been studied. We sampled the rhizosphere of representative trees (Olneya tesota, Prosopis juliflora, and Parkinsonia microphylla), and shrubs (Jatropha cuneata and Larrea tridentata) of the Sonoran Desert for four seasons in order to evaluate the mycorrhizal status, carbon and glomalin accumulation, and their relationship with water stable aggregates. Results showed that mycorrhizic association is present all the year on studied plants, with values from 1.2 to 57% of mycorrhizal colonization, with variations depending on the season. The accumulation of carbon in the soil profile has significant differences between plants and ranged from 1.1 to 1.75% for Larrea and Prosopis, respectively. The water stable aggregates were significantly different between plants and ranged between 24% and 42%. Glomalin correlation with carbon content and water stable aggregates shows the role of mycorrhizal fungi on soil quality, highlighting influence on carbon content in rhizosphere.


Abd El-Ghani MM, Huerta-Martínez FM, Hongyan L, Qureshi R. 2017. The Deserts of Mexico. In: Plant responses to hyperarid desert environments. Springer International Publishing AG.

Aguilera LE, Gutiérrez JR, Meserve PL. 1999. Variation in soil microorganisms and nutrients underneath and outside the canopy of Adesmia bedwellii (Papilionaceae) shrubs in arid coastal Chile following drought and above average rainfall. Journal of Arid Environments 42:61-70.

Alday JG, Santana VM, Marrs RH, Martínez-Ruiz C. 2014. Shrub-induced understory vegetation changes in reclaimed mine sites. Ecology Engineering 73:691-698.

Allington GRH, Valone TJ. 2014. Islands of fertility: a byproduct of grazing? Ecosystems 17:127-141.

Apple ME, Thee CI, Smith-Longozo VL, Cogar CR, Wells CE, Nowak RS. 2005. Arbuscular mycorrhizal colonization of Larrea tridentata and Ambrosia dumosa roots varies with precipitation and season in the Mojave Desert. Symbiosis 39:131-136.

Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR. 2017. Woody Plant Encroachment: Causes and Consequences. In: Briske DD, editor. Rangeland Systems: Processes, Management and Challenges. Springer International Publishing AG.

Aysha A, Abu Hena MK, Mishra M, Nesarul MH, Padhi BK, Mishra SK, Islam MS, Idris MH, Masum MB. 2015. Sediment and carbon accumulation in sub-tropical salt marsh and mangrove habitats of north-eastern coast of Bay of Bengal, Indian Ocean. International Journal of Fisheries and Aquatic Studies 2: 184-189.

Azcón-Bieto J, Talón M. 2008. Fundamentos de Fisiologia Vegetal. 2ª Ed. McGraw-Hill Interamericana.

Bashan Y, de-Bashan LE. 2010. Microbial populations of arid lands and their potential for restoration of deserts. In: Dion P, editor. Soil Biology and Agriculture in the Tropics, Soil Biology 21. Berlin Heidelberg: Springer-Verlag.

Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M. 2009. Changes in soil aggregation and glomalin-related soil protein content as affected by arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biology & Biochemistry 41:1491-1496.

Bird SB, Herrick JE, Wander MM, Wright SB. 2002. Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environmental Pollution 116:445-455.

Blume HP, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke BM. 2016. Scheffer/Schachtschabel Soil Science. Berlin Heidelberg: Springer-Verlag.

Carrillo-García A, León de la Luz JL, Bashan Y, Bethlenfalvay GJ. 1999. Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restoration Ecology 7:321-335.

Chandregowda MH, Murthy K, Bagchi S. 2018. Woody shrubs increase soil microbial functions and multifunctionality in a tropical semi-arid grazing ecosystem. Journal of Arid Environments 155:65-72.

Collier SC, Yarnes CT, Peter Herman R. 2003. Mycorrhizal dependency of Chihuahuan Desert plants is influenced by life history strategy and root morphology. Journal of Arid Environment 55:223-229.

Driver JD, Holben WE, Rillig MC. 2005. Characterization of glomalin as hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology & Biochemistry 37:101-106.

Emran M, Gispert M, Pardini G. 2012. Patterns of soil organic carbon, glomalin and structural stability in abandoned Mediterranean terraced lands. European Journal of Soil Science 63:637-649.

Gerdemann JW, Nicolson H. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet-sieving and decanting. Transactions of The British Mycological Society 46:235-244.

Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519-530.

Giovannetti M, Avio L. 2002. Biotechnology of arbuscular mycorrhizas. In: Khachatourians GG, Arora D K, editors. Applied mycology and biotechnology: agriculture and food production, Vol 2. Amsterdam: Elsevier.

Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist 84:489-500.

Halvorson JJ, González JM. 2006. Bradford reactive soil protein in Appalachian soils: distribution and response to incubation, extraction reagent and tannins. Plant Soil 286:339-356.

Hernández-Zamudio G, Sáenz-Mata J, Moreno-Reséndez A, Castañeda-Gaytan G, Ogaz A, Carballar-Hernández S, Hernández-Cuevas L. 2018. Dinámica de la diversidad temporal de los hongos micorrícicos arbusculares de Larrea tridentata (Sesse & Mocino ex DC) Coville en un ecosistema semiárido. Revista Argentina de Microbiología 50:301-310.

Herrera-Peraza RA, Furrazola E, Ferrer RL, Fernández-Valle R, Torres-Arias T. 2004. Functional strategies of root hairs and arbuscular mycorrhizae in an evergreen tropical forest, Sierra del Rosario, Cuba. Revista CENIC Ciencias Biológicas 35:113-123.

INEGI. 2005. Guía para la interpretación de la cartografía, uso de suelo y vegetación. 1:250.000. Aguascalientes, Mexico: Instituto Nacional de Estadística, Geografía e Informática.

Janoušková M, Rydlová J, Püschel D, Száková J. Vosátka M. 2011. Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Mycorrhiza 21:641-650.

Kumar P, Chandra PP, Singh BK, Katiyar S, Mandal VP, Rani M, Tomar V, Patairiya S. 2016. Estimation of accumulated soil organic carbon stock in tropical forest using geospatial strategy. The Egyptian Journal of Remote Sensing and Space Sciences 19:109-123.

Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC. 2014. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation – a meta-analysis. Plant Soil 374:523-537.

Munzbergova Z, Ward D. 2002. Acacia trees as keystone species in Negev desert ecosystems. Journal of Vegetation Science 13:227-236.

Nichols KA, Toro M. 2011. A whole soil stability index (WSSI) for evaluating soil aggregation. Soil & Tillage Research 111:99-104.

Ochoa-Meza A, Esqueda M, Fernández-Valle R, Herrera-Peraza R. 2009. Variacion estacional de hongos micorrízicos arbusculares asociados con Agave angustifolia Haw. en la Sierra Sonorense, Mexico. Revista Fitotecnia Mexicana 32:189-199.

Pansu M, Gautheyrou J. 2006. Handbook of soil analysis; mineralogical, organic and inorganic methods. Berlin Heidelberg: Springer-Verlag.

Pepe A, Giovannetti M, Sbrana C. 2018. Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Scientific Reports 8:10235.

Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:158-161.

Rillig MC. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science 84:355-363.

Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A. 2015. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytologist 205:1385-1388.

Rillig MC, Ramsey PW, Morris S, Paul EA. 2003. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant and Soil 253:293-299.

Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS. 2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167-177.

Shreve F, Wiggins LI. 1964. Vegetation of the Sonoran Desert. Vol. I. Stanford, California: Stanford University Press.

Shuab R, Lone R, Ahmad J, Reshi ZA. 2017. Arbuscular mycorrhizal fungi: A potential tool for restoration of degraded land. In: Varma A, Prasad R, Tuteja N, editors. Mycorrhiza-Nutrient uptake, Biocontrol, Ecorestoration. 4th Ed. Switzerland: Springer Verlag.

Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis. 3rd Ed. San Diego, USA: Academic Press.

van der Heijden MGA, Sanders I, editors. 2002. Mycorrhizal Ecology. Berlin: Springer. 471 p.

Verma N, Tarafdar JC, Srivastava KK, Panwar J. 2008. Arbuscular mycorrhizal (AM) diversity in Prosopis cineraria (L.) Druce under arid agroecosystems. Agricultural Sciences in China 7:754-761.

Wilcox BP, Le Maitre D, Jobbagy E, Wang L, Breshears DD. 2017. Ecohydrology: Processes and Implications for Rangelands. In: Briske DD, editor. Rangeland Systems. Processes, Management and Challenges. Springer Series on Environmental Management. Springer International Publishing. p. 85-129.

Wright SF, Upadhyaya A. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 198:97-107.